

## STEREOCHEMICAL STUDIES OF 2-HYDROXYCHROMANONES BY $^1\text{H}$ NMR SPECTROSCOPY

JÁNOS BORBÉLY and VINCE SZABÓ

Department of Applied Chemistry, Kossuth Lajos University, H-4010, Debrecen 10, Hungary

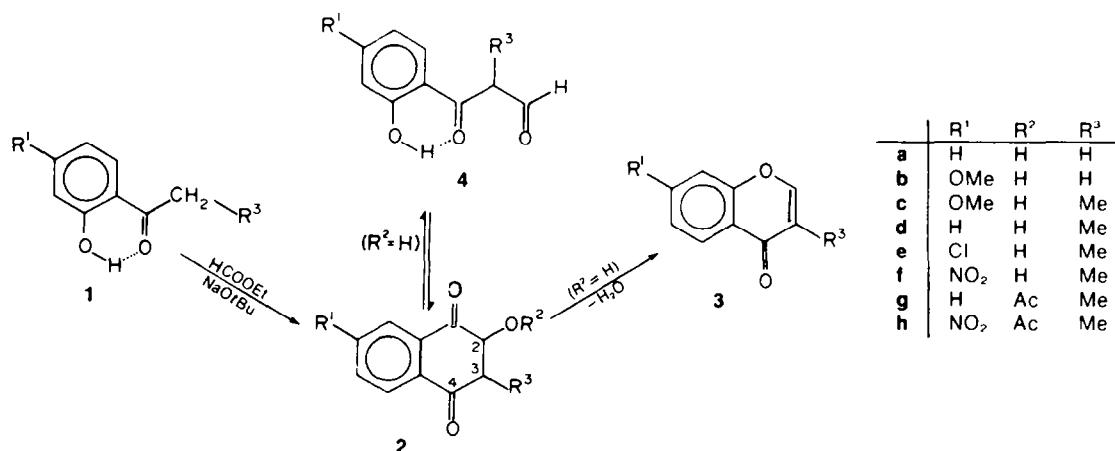
and

PÁL SOHÁR

"EGYT" Pharmacological Works, H-1475, Budapest, P. O. Box 100, Hungary

(Received in UK 3 November 1980)

**Abstract**—2-Hydroxychromanones (**2a-f**) were synthesized by ring closing of 2-hydroxyacetophenones (**1a, b**) and 2-hydroxypropiophenones (**1c-f**). In the case of 2-hydroxy-3-methyl-chromanones (**2c-f**) a mixture of *cis* and *trans* isomers was obtained. The *trans* isomers are conformationally homogeneous, the *cis* isomers exist in a conformational equilibrium. At room temperature the isomers are transformed into each other via opening of the heterocyclic ring. This process becomes faster in alkaline medium and the  $\beta$ -diketo form **4** can also be observed.


2-Hydroxyacetophenones (**1**) can be transformed into chromones (**3**) via 2-hydroxy-chromanone derivatives (**2**) with alkali formates and alkali-alkoxides (Scheme 1).<sup>1,2</sup> Synthesis and investigation of these chromanones were published elsewhere.<sup>3,4</sup>

A relatively small number of papers deal with the structure and reactivity of 2-hydroxychromanones<sup>5</sup>. Some authors report on a ring-chain isomerisation ( $2 \rightleftharpoons 4$ )<sup>6</sup>, or ring opening<sup>7</sup> of these compounds: while others give preference to the  $\beta$ -diketo (**4**)<sup>8</sup>, or to the cyclic form (**2**)<sup>9</sup>. There is also doubt as to the configuration of the cyclic form. Thus for 2-hydroxy-3-phenylchromanone either the *trans*<sup>10</sup> or the *cis* configuration<sup>11</sup> is proposed as the only form. Relevant structural data for this type compound are known for the 2-hydroxy-2-phenylchromanone<sup>12</sup>. The present communication reports on the stereochemical investigation of the 2-hydroxychromanone and some 2-hydroxy-3-methylchromanone derivatives.

Coupling constants determined from the *ABX* spin system of the heterocyclic protons of **2a** are:  $J_{AB} = 16.5$ ,

$J_{AX} = 3.43$  and  $J_{BX} = 4.78$  Hz<sup>9</sup> but they do not give any information about either the  $3 \rightleftharpoons 4$  isomerism or the conformation. For this reason we studied the temperature dependence of the  $^1\text{H}$  NMR spectra. On the spectrum of **2a** recorded at 30° the  $C_2\text{-OH}$  signal (Fig. 1a) is broad due to the slow exchange process: the  $H-2$  signal triplet-like, and the  $H-3$  signal consists of 8 lines characteristic for the *AB* part of an *ABX* system. On lowering the temperature the  $C_2\text{-OH}$  signal splits first to doublet (Fig. 1b,c) and then to a double doublet (Fig. 1d,e). The  $H-2$  triplet transformed to quartet-like multiplet even at 0°. The lines of the  $A$  proton show a further split at 25°, due probably to the  $J(H-2, OH)$  coupling<sup>13</sup>. This means that the OH group is *quasi-axial* (*a'*) because only in this case is a zig-zag (*W*) arrangement possible, which is favourable for the long range coupling.

After  $\text{D}_2\text{O}$  addition at -20° (Fig. 1f) the  $C_2\text{-OH}$  signal disappears and the splitting due to  $J(H, OH)$  coupling is no longer observable: The triplet-like structure of the  $H-2$  signal detected at room temperature (see Fig. 2a) is re-formed. The  $H-3$  protons are partially exchanged.



Scheme 1.

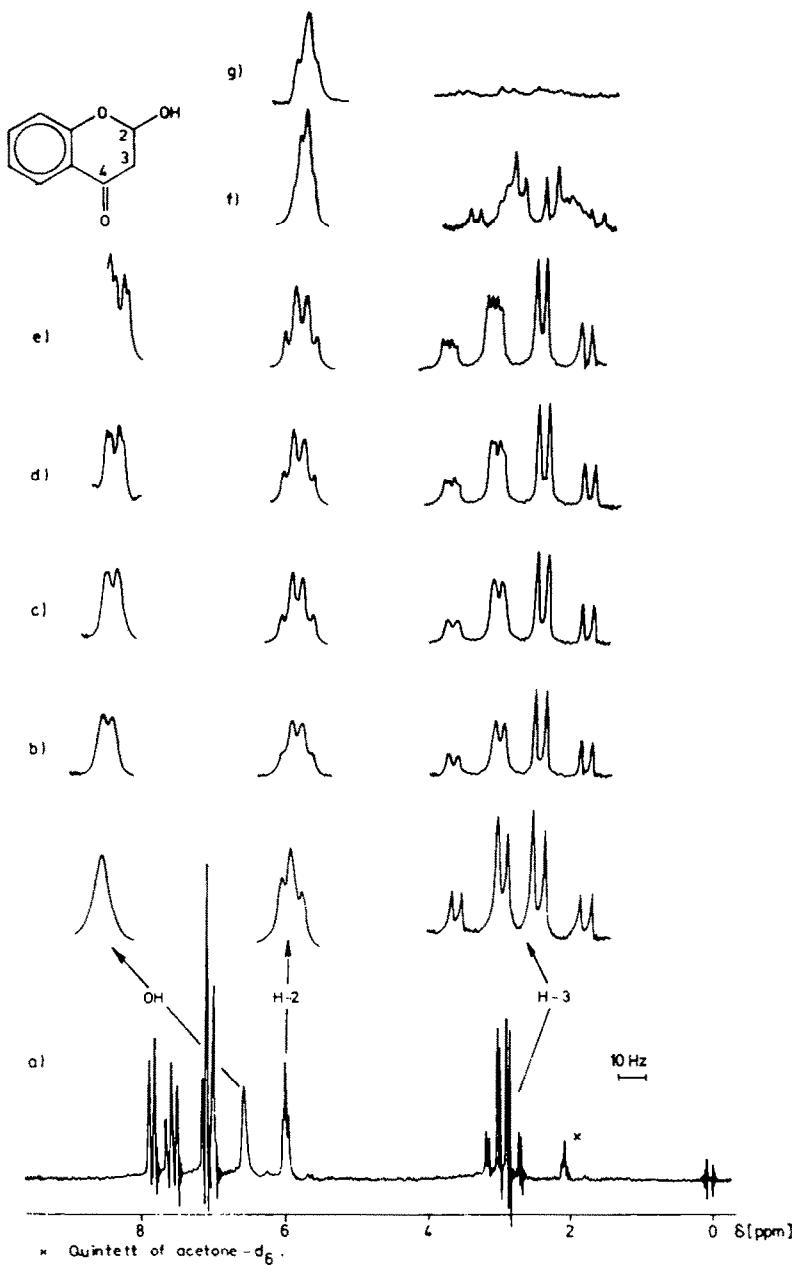



Fig. 1.  $^1\text{H}$  NMR spectra of **2a** in acetone- $\text{d}_6$ . a:  $30^\circ$ ; b:  $0^\circ$ ; c:  $-10^\circ$ ; d:  $-20^\circ$ ; e:  $-25^\circ$ ; f:  $+\text{D}_2\text{O}(-20^\circ)$ ; g:  $+\text{D}_2\text{O}$  (after 50 hr).

and the residual H-3 signal is superimposed on the broad multiplet of the 3-HD group. 50 hrs later the AB part disappears and the X part becomes a broad singlet, because of the complete H  $\rightarrow$  D exchange of the 3-methylene group (Fig. 1g) via ring opening or enolisation of the 4-one group.

In the synthesis of the 2-hydroxy-3-methylchromanones the formation of *cis-trans* isomers is possible. Our investigation was aimed at the determination of the structures of these isomers and the isomer ratio.

In the spectrum of **2d** recorded in acetone- $\text{d}_6$  doubled H-2, C<sub>2</sub>-OH, H-3 and C<sub>3</sub>-Me signals refer to a mixture of *cis* and *trans* isomers. The signals can be sorted into two sets by their intensities and coupling constants (Table I), or by studying their temperature dependence.

At  $30^\circ$  (Fig. 2a) one of the H-2 signals (5.95) shows a splitting of 3.0 Hz ( $J_{2,3}$ ) so it belongs to the *cis* isomer which may have two chair conformers (C' and C'', Scheme 2). The other signal (5.85) having a coupling constant ( $J_{2,3}$ ) of 6.0 Hz belongs to the *trans* isomer. The further signals can be assigned on the basis of their relative intensities.

At lower temperature (Fig. 2b) the H-2 triplet of the *cis* isomer is split to a doublet. The coupling constants  $^3\text{J}(\text{H},\text{H})$  and  $^4\text{J}(\text{H},\text{OH})$  refer to interactions with H-3 and C<sub>2</sub>-OH protons. The C<sub>2</sub>-OH signal is also split to double doublet due to the  $^3\text{J}(\text{H},\text{OH})$  and  $^4\text{J}(\text{H},\text{OH})$  couplings. The multiplicity of the H-3 signal containing 16 lines is the result of the  $^3\text{J}(\text{H},\text{CH}_3)$ ,  $^3\text{J}(\text{H},\text{H})$  and  $^4\text{J}(\text{H},\text{OH})$  couplings, respectively.

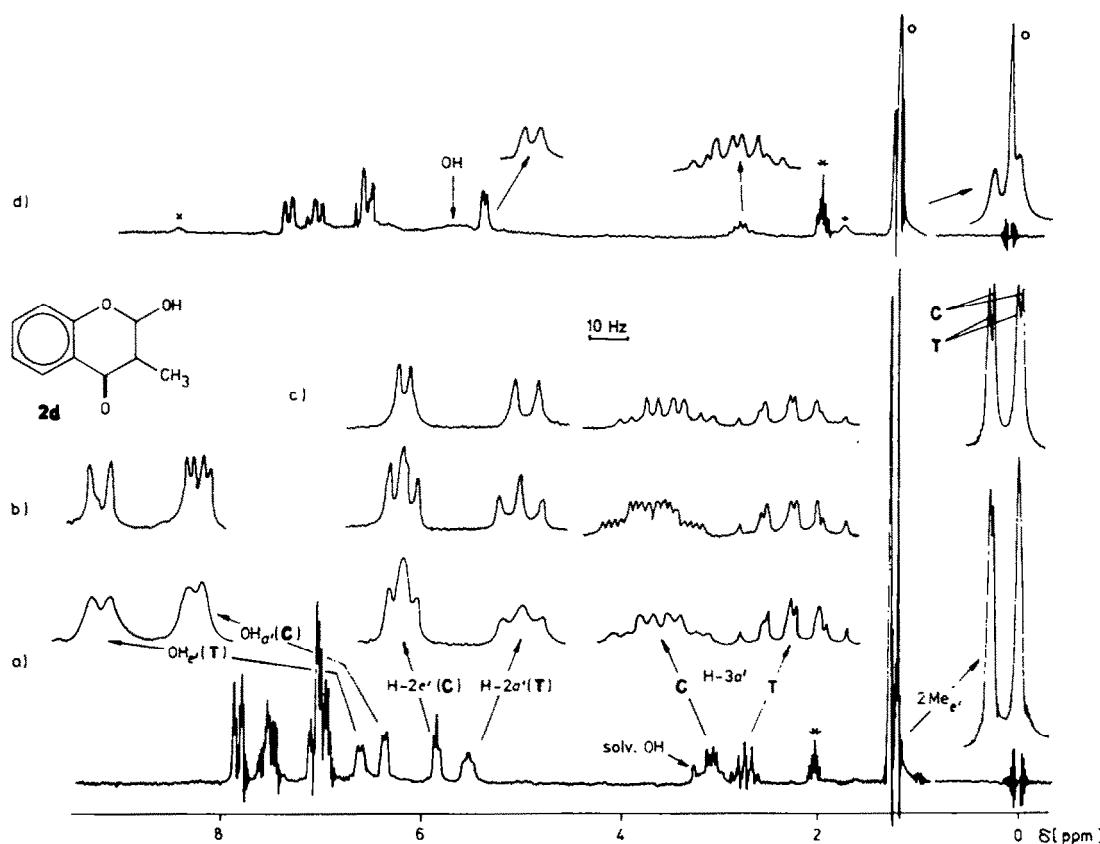
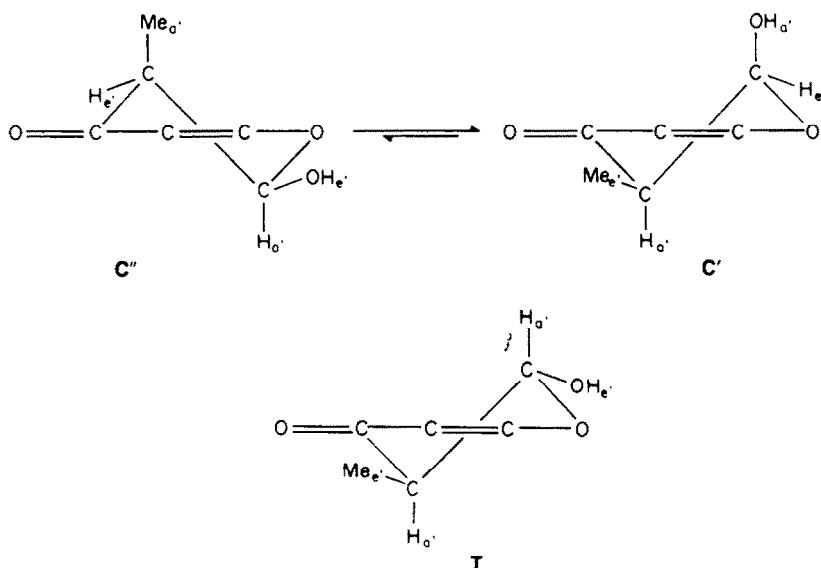




Fig. 2.  $^1\text{H}$  NMR spectra of  $2\text{d}$  in acetone- $\text{d}_6$ . a:30°; b:0°; c:after adding  $\text{D}_2\text{O}$  (0°) and d:after adding  $\text{NaOtBu}$ . \*:t-Bu group \*: quintet of acetone- $\text{d}_6$ , + and \*: methyl and formyl signals of 4.



Scheme 2.

The spectral change is similar to that observed in the case of  $2\text{a}$ , so the C' conformer of  $2\text{d}$  with a *quasi-axial*  $\text{C}_2\text{-OH}$  group is more stable at lower temperature. The higher stability of this conformer is probably due to the anomer effect<sup>14</sup>. It should be noted that in  $\text{DMSO-d}_6$ , the long range coupling  $^4\text{J}(\text{H},\text{OH})$  can be observed even at 30°. The signals of the *trans* isomer are temperature-

independent (to-60°), so it can be regarded as conformationally homogeneous and the substituents ( $\text{C}_2\text{-OH}$  and  $\text{C}_3\text{-Me}$ ) are *diequatorial*, as expected.

At -50° the spectrum of  $2\text{f}$  is analogous to the spectra of  $2\text{d}$  and  $2\text{e}$  recorded at 0° and 30°, respectively, only the ratio of the isomers is different (Table 1).

In the case of  $2\text{f}$  at higher temperature H-2, H-3 and

Table 1.  $^1\text{H}$  NMR data of compounds **2a-2h** in acetone- $d_6$  (chemical shifts are given in  $\delta$  ppm;  $\delta_{\text{TMS}} = 0$  ppm, coupling constants in Hz)

| Compound       | Temp. [°C] | Isomer           | Cis-trans ratio | $6\text{CH}_3$             | $6\text{H}-2$               | $6\text{H}-3$                          | $\text{S OH}$               | $^{2}\text{J}_{3,3}(\text{H},\text{H})$<br>or<br>$^{3}\text{J}(\text{CH}_3,\text{H})$ | $^{2}\text{J}_{3,3}(\text{H},\text{H})$<br>or<br>$^{3}\text{J}_{2,3\text{H}}$ | $^{3}\text{J}(\text{H},\text{H})$ | $^{4}\text{J}(\text{H},\text{OH})$ |
|----------------|------------|------------------|-----------------|----------------------------|-----------------------------|----------------------------------------|-----------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|------------------------------------|
| <b>2a</b>      | 30<br>-25  |                  |                 | -                          | 5.85 <u>m</u>               | 3.08 (a) <u>m</u><br>2.70 (e) <u>m</u> | 6.52 <u>bs</u>              | 16.0                                                                                  | 4.1<br>2.9                                                                    | -                                 | -                                  |
| <b>2b</b>      | 30         |                  |                 | -                          | 6.00 <u>m</u>               | 3.10 (a) <u>m</u><br>2.80 (e) <u>m</u> | 6.82 <u>dd</u> <sup>+</sup> | 16.5                                                                                  | 3.5<br>3.0                                                                    | 5.0                               | 1.8                                |
| <b>2c</b>      | 30         | <u>cis</u>       |                 | -                          | 5.82 <u>m</u>               | 2.90 (a) <u>m</u><br>2.65 (e) <u>m</u> | 7.40 <u>bs</u> <sup>+</sup> | 16.2                                                                                  | 5.2<br>2.8                                                                    | -                                 | -                                  |
| <b>2c</b>      | 30         | <u>trans</u>     | 11:10           | 1.20 <u>d</u> <sup>+</sup> | 5.80 <u>br</u> <sup>+</sup> | 2.98 <u>dq</u> <sup>+</sup>            | 7.20 <u>bs</u> <sup>+</sup> | 7.0                                                                                   | 2.9                                                                           | -                                 | -                                  |
| <b>2d</b>      | 30<br>1    | <u>cis</u>       | 6:5             | 1.20 <u>d</u> <sup>+</sup> | 5.45 <u>br</u> <sup>+</sup> | 2.63 <u>dq</u> <sup>+</sup>            | 7.40 <u>bs</u> <sup>+</sup> | 7.2                                                                                   | 6.9                                                                           | -                                 | -                                  |
| <b>2d</b>      | 30<br>0    | <u>trans</u>     | -               | 1.22 <u>d</u> <sup>+</sup> | 5.95 <u>br</u> <sup>+</sup> | 3.19 <u>dq</u> <sup>+</sup>            | 6.38 <u>bs</u> <sup>+</sup> | 6.8                                                                                   | 3.0                                                                           | -                                 | -                                  |
| <b>2e</b>      | 30         | <u>cis</u>       | 5:7             | 1.20 <u>d</u> <sup>+</sup> | 5.85 <u>dd</u> <sup>+</sup> | 3.03 <u>ddq</u> <sup>+</sup>           | 7.18 <u>dd</u> <sup>+</sup> | 6.8                                                                                   | 3.0                                                                           | 3.2                               | 1.9                                |
| <b>2e</b>      | 30         | <u>trans</u>     | -               | 1.25 <u>d</u> <sup>+</sup> | 5.58 <u>br</u> <sup>+</sup> | 2.75 <u>dq</u> <sup>+</sup>            | 6.63 <u>bs</u> <sup>+</sup> | 7.2                                                                                   | 6.9                                                                           | -                                 | -                                  |
| <b>2f</b>      | -50<br>-50 | <u>cis+trans</u> |                 | 1.23 <u>d</u> <sup>+</sup> | 5.92 <u>dd</u> <sup>+</sup> | 3.15 <u>ddq</u> <sup>+</sup>           | 6.72 <u>dd</u> <sup>+</sup> | 6.9                                                                                   | 3.1                                                                           | 4.2                               | 1.9                                |
| <b>2g</b>      | 30         | <u>trans</u>     | 1:3             | 1.25 <u>d</u> <sup>+</sup> | 5.62 <u>dd</u> <sup>+</sup> | 2.78 <u>dq</u> <sup>+</sup>            | 6.95 <u>d</u> <sup>+</sup>  | 7.2                                                                                   | 5.5                                                                           | -                                 | -                                  |
| <b>2h</b>      | 30         | <u>trans</u>     | -               | 1.25 <u>d</u> <sup>+</sup> | 5.85 <u>dd</u>              | 2.95 <u>dq</u>                         | 7.05 <u>d</u> <sup>+</sup>  | 6.8                                                                                   | 5.2                                                                           | 4.8                               | -                                  |
| <b>2d+base</b> | 60         |                  |                 | 1.25 <u>d</u> <sup>0</sup> | 5.90 <u>br</u> <sup>+</sup> | 3.15 <u>bs</u> <sup>+</sup>            | 6.85 <u>bs</u> <sup>+</sup> | 6.8                                                                                   | -                                                                             | 4.1                               | -                                  |
| <b>2g</b>      | 30         | <u>trans</u>     | -60             | 1.30 <u>d</u> <sup>+</sup> | 6.45 <u>d</u> <sup>+</sup>  | 2.82 <u>dq</u>                         | 2.09 <u>s</u> <sup>+</sup>  | 7.3                                                                                   | 3.9                                                                           | -                                 | -                                  |
| <b>2h</b>      | 30         | <u>trans</u>     | -               | 1.35 <u>d</u> <sup>+</sup> | 6.70 <u>d</u> <sup>+</sup>  | 3.10 <u>dq</u>                         | 2.15 <u>s</u> <sup>+</sup>  | 7.3                                                                                   | 4.0                                                                           | -                                 | -                                  |
| <b>2d+base</b> | 30         |                  | -               | 1.22 <u>d</u> <sup>+</sup> | 5.68 <u>d</u> <sup>+</sup>  | 2.90 <u>dq</u>                         | 6.15 <u>bs</u>              | 7.0                                                                                   | 4.5                                                                           | -                                 | -                                  |

s: singlet, bs: broad singlet, d: doublet, dd: double doublet, dq: double quartet, ddq: doubled double quartet (four lines of which are collapsed to two doublets), m: multiplet, br: broad signal (triplet-like dd),

Multiplicity after adding  $\text{D}_2\text{O}$ : <sup>+</sup>: no change, <sup>-</sup>: the signal disappear, <sup>x</sup>: d, <sup>0</sup>: bs, <sup>•</sup>: dq,

<sup>+</sup>:  $\text{SCH}_3$  singlet of the acetyl group in case of compounds **2g** and **2h**.

Table 2. Yields, melting points and IR data (in  $\text{cm}^{-1}$ ) of compounds 2a-2h

| Compound | Yield<br>[ % ] | Melting<br>point<br>[ $^{\circ}\text{C}$ ] | IR data        |                                                             |                                        |                 |
|----------|----------------|--------------------------------------------|----------------|-------------------------------------------------------------|----------------------------------------|-----------------|
|          |                |                                            | $\nu\text{OH}$ |                                                             | $\nu\text{C}=\text{O}$                 |                 |
|          |                |                                            | KBr            | $\text{CHCl}_3$                                             | KBr                                    | $\text{CHCl}_3$ |
| 2a       | 92.3           | 94 - 96                                    | 3337           | 3595 <sup>+</sup><br>3350                                   | 1663                                   | 1691            |
| 2b       | 77.5           | 110 - 114                                  | 3341           | -                                                           | 1652                                   | -               |
| 2c       | 85.0           | 135 - 138                                  | 3380           | -                                                           | 1655                                   | -               |
| 2d       | 91.0           | 101 - 102                                  | 3400           | 3680 <sup>+</sup><br>3586 <sup>+</sup><br>3350 <sup>o</sup> | 1675                                   | 1689            |
| 2e       | 83.0           | 104 - 105                                  | 3270           | -                                                           | 1676                                   | -               |
| 2f       | 97.0           | 140 - 142                                  | 3415           | -                                                           | 1690                                   | -               |
| 2g       | 90.2           | 45 - 46                                    | -              | -                                                           | 1700 <sup>x</sup><br>1768 <sup>x</sup> | -               |
| 2h       | 35.2           | 129 - 130                                  | -              | -                                                           | 1678 <sup>x</sup><br>1760 <sup>x</sup> | -               |

<sup>+</sup> : Monomer,<sup>o</sup> : dimer,<sup>x</sup> : acetoxy group

$\text{C}_2\text{-OH}$  signals are broadened gradually and above  $20^{\circ}$  signals of the two isomers collapse in to overlapped broad maximums. After adding  $\text{D}_2\text{O}$  the  $\text{C}_2\text{-OH}$  proton is exchanged instantly and also the H-3 atoms exchange very fast. The H-2 signal of this deuterated compound is a broad singlet at  $20^{\circ}$ , which splits at  $-10^{\circ}$  into two lines belonging to the *cis* and *trans* isomers. This fact can be explained by a  $\text{trans} \rightleftharpoons \text{cis}$  isomerisation simultaneous with a fast  $\text{C}'=\text{C}''$  inversion, which can take place via enolisation of the 4-one group or by  $2 \rightleftharpoons 4$  tautomerism.

The spectrum of 2d recorded in abs acetone after addition of a catalytic amount of  $\text{NaOtBu}$  base (Fig. 2d) gives experimental evidences for the  $2 \rightleftharpoons 4$  tautomerism. In this spectrum namely the formyl and methyl signal of 4 appear at 9.00, and 1.80 ppm, respectively, with 1:3 intensity. The signals of the *cis* and *trans* isomers of 2d collapse at average values (Fig. 2d) indicating a fast isomerisation. The  $J_{2,3}$  coupling constant is an averaged value (4.5 Hz) of that of the *cis* and *trans* isomers (3.0 and 6.0 Hz).

Further evidence for the isomerism is the acylation of 2d. When this was carried out at  $-10^{\circ}$  in pyridine, using acetic anhydride, 2g was obtained as the stereohomogeneous *trans*-isomer with approximately 90% yield ( $J_{2,3} = 4.0$  Hz). The *-I* effect of the acetoxy group may be the reason of the relative small coupling constant. Since 2d is a 1:1 mixture of *cis* and *trans* forms (Fig. 2a and Table 1) the formation of stereohomogeneous *trans* acetoxy derivative of 90% yield confirms unambiguously the  $\text{cis} \rightleftharpoons \text{trans}$  isomerisation. The faster acylation of the *trans* isomer refers to an effective kinetic control (otherwise the *cis* isomer is the more stable one).

Acyliating 2f in the same manner also yielded a stereohomogeneous *trans* isomer (2h) ( $J_{2,3} = 4.5$  Hz) but in lower yield.

It can be concluded (Table 1.) that the  $\text{C}'=\text{C}''$  conformational equilibrium is shifted toward C' at lower temperatures. Our experiments clearly demonstrated that the electron-attractive substituents at position 7 accelerate significantly the  $\text{cis} \rightleftharpoons \text{trans}$  isomerisation and

increase the relative amount of the *cis* form in the mixture. In the case of 2c and 2d the *cis-trans* ratio is nearly 1:1 while in 2f it is about 3:1.

## EXPERIMENTAL

The IR spectra were run on a Perkin-Elmer 283 spectrometer, the  $^1\text{H}$  NMR spectra were recorded on a JEOL NM11-100, using TMS as internal reference.

**Preparation of 2a-f.** Compounds 1a-f were reacted with ethyl formate in the presence of  $\text{NaOtBu}$  as described. Compounds 2a-f were obtained with a high yield (Table 2).

**Preparation of 2g and 2h.**  $2 \times 10^{-2}$  M of 2d or 2f was dissolved in anhyd. pyridine (2 ml), and at  $-10^{\circ}$  acetic anhydride was added ( $2.2 \times 10^{-3}$  M). After 24 hr the mixture was poured into ice-water (20 ml). The crystals were recrystallized from EtOH. The yields, m.p.s and IR data of 2a-h are shown in Table 2.

## REFERENCES

- Szabó V., Borbély SZ., Farkas E. and Tolnai S.: *Magy. Kém. Folyóirat*, (In Hungarian) 81, 220 (1975).
- Szabó V., Borbély SZ.: *Ibid.* (In Hungarian) 82, 259 (1976).
- Borbély J.: Ph.D. Thesis, (In Hungarian) Debrecen (1979).
- Szabó V., Kiss A.: *Magy. Kém. Folyóirat*, (In Hungarian) 85, 353 (1979).
- Lockhardt, I. M.: *Chromenes, Chromanones and Chromones* in: *The Chemistry of Heterocyclic Compounds*, (Edited by G. P. Ellis) Vol. 31, p. 367. Wiley, New York (1977).
- Ahuwalia, V. K., Kumar, D. and Nani, N., Sunita: *Indian J. Chem.* 15B, 328 (1977); Ahuwalia, V. K. and Prakash, C.: *Ibid.* 15B, 331 (1977).
- Szabó V. and Zsuga, M.: *Acta Chim. Acad. Sci. Hung.* 97, 451 (1978); and previous papers.
- Schönberg, A. and Sina, A.: *J. Am. Chem. Soc.* 72, 3396 (1950), Wagner, H., Seligman, O., Hörhammer, L., Nógrádi, M., Farkas, L., Strelisky, J. and Vermes, B.: *Acta Chim. Acad. Sci. Hung.* 57, 169 (1968); Eiden, F. and Luft, W. *Arch. Pharm.* 306, 634 (1973), Basiliński, W. and Jerzmanowska, Z. *Polish J. Chem.* 53, 229 (1979).
- Dean, F. M. and Murray, S. J. *Chem. Soc. Perkin I.*, 1706 (1975).
- Whalley, W. B.: *The Chemistry of Flavonoid Compounds* (Edited by T. A. Geissman) p. 462. Pergamon Press, Oxford (1962).

<sup>11</sup>Yamaguchi, S., Ito, S., Nakamura, A., Inoue, N., *Bull. Chem. Soc. Japan* **T39**, 622 (1966).

<sup>12</sup>Hauteville, M., Chadenson, M. and Chopin, J., *Bull. Soc. Chim. Fr.* II-125, (1979) and previous papers.

<sup>13</sup>Rader, C. P., *J. Am. Chem. Soc.* **88**, 1713 (1966), Jochims, J. C., Otting, W., Seeliger, A. and Taigel, G.: *Chem. Ber.* **102**, 255 (1969).

<sup>14</sup>Lemieux, R. U.: *Molecular Rearrangements* (Edited by P. De Mayo), Vol. II, p. 735. Interscience, New York (1964).